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Abstract

Abstract In Ishii [1, 2] we considered Hamilton systems with perturved Yang-Mills potential. This
potential contains a parameter e. We showed that, for some parametrs, there were sets of integral
Kowalevskii’s exponents (see [8]). But we could not show the existence of enough many integrals for
integrability of this Hamiltonian even if e=2. Therefore we must chracterize the parameter e¢ more
definitely.

M. Lakshmanan and R. Sahadevan [5] had considered some Hamilton system and they had given two
aditional integrals besides the Hamiltonian. We showed the uniqueness of the parameter e (| e | <o) which
gave the aditional two integrals besides the Hamiltonian introduced by M. Lakshmanan and R. Sahadevan.
In this paper we apply the Theorem by T.Kimura as we did in [3] to characterize e.

1. Introduction

We follow Yoshida [9] and we call

H (01,025,002, =5 (B1+ 05+ 1) + Vo (a1,02,05), M
Vo(q1,q2,q5) = (qiad + a3 a5 + diqt) )
the Hamiltonian with the Yang-Mills potential V4(qi1,¢2,¢3). And we call
H (q1,g2,q3,01,02,03) = T (p1,02,05) + V (q1,42,45), (3)
T (pr. ) = (Bi+ 13+ 10), @
V (q1,q2,q5) :ze(qi”r é+ad) +H(dE+dd+dad) (5)

the Hamiltonian with the perturved Yang-Mills potential V (g1,42,4s), where e is a parame-
ter.

It is known that the Hamilton system (1) is not integrable, by computing the Kowalevs-
kii’s exponents of (1), because (1) has irrational Kowalevskii’s exponents.

On the other hand, Hamilton system (3) has Kowalevskii’s exponents with only inte-
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gers for only e=1/2, oo (see Ishii[1]). This is a necessary condition for the integrability of
(3). It is interesting to chracterize the parameter e in detail from another point of view.

In the first place we consider the integrability of (3) when e#co. After these con
sideration, we study the integrability of (3) under the condition e=oo.

2. Straight-line solutions and variational equations around them

We write (g1,42,q3) = q, (p1,02,p3) =p and we consider canonical equations :
d d . _
g 4—grad T (p), = —grad Vig). (6)

The straight-line solution is given by
q=cQ(t), p=cP (1), e=(c,c5,03), (7
where ¢ is determined by the algebraic equation
c=grad T (¢)=grad V (c). (8)
and Q(#), P(¢) will be given later as a solution of the simultaneuos diffierential equation

do_p dp__ 5
Q=P S P=—Q" ()
By solving the equation (8), involving a trivial solution (0, 0, 0) = ¢, one has 27 solutions
c;(j=0,1, 2, ---, 26). Thus by use of these solutions of (8) one has straight-line solutions
except trivial case. In this discussion we consider nontrivial cases only.
At each straight-line solution one has a variational equation(VE) :

Le=DT(e)n n=—QUIDV (e)E (=12, -, 26), 10)

where D*T (c;), D*V (¢;) are Hessian at p=¢;, g=c;, and €=05q, n=20p respectively.

By computing, concretely, for ¢;(j=1, 2, -+, 6) the eigenvalues of D*V (¢;) are Ai,1=2/
e, he=2/e, Ai3=3, for ¢;(j=7, 8, ---, 18) the eigenvalues of D*V (¢;) are As,;=4/(e+2), s
=(—2+43e)/(e+2), A23=3, and for ¢,; (=19, 20, ---, 26) the eigenvalues of D*V (¢;) are As,
=3e/(e+4), 2=3e/(e+4), 2s3=3. Notice that by use of homogeneity of V (g1,¢2,q3), Ai:
=3(i=1, 2, 3).

Notice the symmetry of D?*V (¢;) then one has following VEs by change of variable :

(VEY) "=—Q(t)*Diag (M1,A 23 & (ej 7=1,2, -, 6),
(VE») "=—Q (t)*Diag (Jo,,Ae2,005) & (es, =T, 8, -+, 18),
(VEs) &'=—Q(t) Diag(ls,1,As2,433) & (c;, =19, -+, 26).

3. Solvability of Gauss Hypergeometric equation

P=P(t), Q=Q(¢), the solution of differential equation (9), is given as following.
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The equation (9) is derived by one-degree-of-freedom Hamiltonian

=P+ Q" (11)
If we set the value 2= L we find that @=@Q (¢) is given by the inverse function of

T
t—tozf[%]md@ (12)

By use of Q=@ (¢) we have P=P(¢) and equation (9) is solved completely.
Now we explain the normal and tangential variational equation by use of (VE;).

E=—Q (1) 6. (13)
is called the tangential variational equation. On the other hand the equation
5”: - Q (t) ZDiag (ﬁl.l,/h,z) 5 (14)

is called the normal variational equation (NVE) for é=(&,5).
Consequently, the NVEs are following :

(NVE1) ”:—Q(t)zDz'ag (/11,1,A1,z) E,

(NVE,) &"=—Q (1)’ Diag (lo1,20.2) &,

(NVE;) &' =—Q(1)2Diag (As,1,43,) €.
One has the following Gauss hypergeometric equations from NVEs by transformation of
independent variable z=@ (#)*.

2

- Lat(3-22) Letie—o (ANVE,)
(ANVE)) 3 5\ 4 2

A1-27L; dzgﬁ(I o) Latfrea—0 (ANVE,)

- La+ (322 e bag—, (ANVE,)
(ANVE,)

-2, d252+<% o) Letfre—0. (ANVE,)

- La+ (322 e dagm, (ANVE,)
(ANVE) \ )

- Lar (322 Lo beey (ANVE,)

ANVE,, ANVE,, ANVE; are systems of independent Gauss hypergeometric equations and
they are the algebraic normal variational equations. Then each ANVE,; is given by

ANVE;=ANVE;, ® ANVE;.(j=1, 2, 3).
These are direct sums. It is known that the ANVE; is solvable, if and only if, each ANVE
5,:(i=1, 2) is solvable (see [7]). First of all we consider the coefficients of above Gauss

hypergeometric equations as following.
Generally, Gauss hypergeometric equation is given by
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2(1*2)%;§+{C*(a+bJrl)Z}%E*abf:O. (15)

In our case a, b, ¢ are given as following (see Yoshida [10]) :

/Iéyj, c=1*% (1=1,23; j=12). (16)

11 .,
a+b—2 g ab=

Constants «, b, ¢ are determined as bellow :

a:%{l—dLelG}, b:%{l‘F 6216 }, C:%</'11,1,/'11,2:%>y (17)
1, [et3d) ,_ 1 et34) _3(, _ 4
a=g]1 Voetz J b*8{1+ PES) } C*4<’1“*e+2>' (18)

1, [25e—14) ,_1 25e—14) _3(, _ —2+3e
“*8{1 e+2 } b*S{H e+2 } C*4<A“* e+2 ) (19)

_ 1, [25e+4) , 1 25e+4) 3 _ 3e
a—8{1 c+4 }, b= 8{1+ e+4 J’, C~4</13,1,/13,2*‘e+4 ) (20)

Then, we take up the [Theorem(T. Kimura)] to study the solvability of (ANV E.),
(ANVE:) and (ANVE:) (see [4]).

K is the field of the set of all rational functions, the field which is obtained from K by
the adjunction of the solutions of the linear ordinary differential equation considered, is
called the Picard-Vessiot extension of K. The field L, which is obtained from K by a
number of steps each of which is either a finite algebraic extension or the adjunction of an
indefinite integral or the adjunction of an exponential of an indefinite integral, is called the
generarized Liouville extension.

The Riemann’s P function of hypergeometric Equation (15) is written in the following
form

0 1
Py 0 0
l-c c¢c—a—0b

(21)

> 2 8
N

Let the difference of exponents A, /i, ¥ at z=0, 1, o then A=1—c¢, g=c—a—b, V=b—a.

Kimura’s theorem is stated as following (see H. Yoshida [11]).

[Theorem (T. Kimura) ] ([4], [10]) Let L be the Picard-Vessiot extension of K for
Gauss hypergeometric equation (15). Inorder to be a generalized Liouville extension of K,
it is necessary and sufficient that either
(i) at least one of A+/ji+ v, —A+i+v, A—ja+ 0, A+ji— 7 is an odd integer, or
(ii) £A, £7, + 7 take values in Table, called the Table of Schwarz-Hukuhara-Ohasi, in
an arbitrary order, with integer [, m, n.
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Case + 1 + i +U Comment

1 % +1 %+ m Arbitrary
1 1 1

3 l+l L+m L+n [+ m+n=even
3 3 3
1 1 1

5 24y Lom L I+ m+n=even
3 4 4
1 1 1

6 9 +1 3 +m 5 +n

7 lJrl Ler LJrn [+m+n=even
5 3 3

3 l+l L+m LJrn [+ m+n=even
3 5 5

9 L+l l+m L+n [+m+n=even
2 5 5
3 1 1 _

10 =+ -~ tm —+n [+ m+mn=even
5 3 5

11 l_;,_[ lﬁ-m l-‘rn [+m+n=even
5 5 5

12 24y Lim Lo I+ m+n=even
3 3 3

13 i+l L+m —+n [+ m+n=even
5 5 5
1 2 1 _

14 -+ —+tm -~ tn [+m+n=even
2 5 3
3 2 1 _

15 €+l g+m ?Jrn [+ m+n=even

4. Integrability of Hamilton system with Yang-Mills potential

(Table of Schwarz-Hukuhara-Ohasi)

By T. Kimura’s theorem we characterize the parametor ¢ which gives integrability of

Hamilton system (3). By computation one has following :

[Theorem 1] Every Gauss hypergeometric equations (ANVE;;(i=1,2,3; j=1, 2))

are solvable if and only if e=2.

(Proof) For every finite e, £ 4, £/, = 7 do not take values in Table of Shwarz-

Hukuhara-Ohasi. To prove this theorem, consider a+ b=1/4, ab=2A then, we have solu-

tions a=(1—v1+84)/8, b=(1+y1+84)/8.

Consider the equations :

-2+

Atfi+v=

R

+

<)

<)

3+«/}1+8/1 PP
:1+./}1+81 okl
—1+.4/1+8A okl

(ED
(E2)

(E3)
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Tta—p=S"8__oppy (E4)
where % is nonnegative integer.

Put A=2/e and solve the equations (E;) of e then one has e=F3,: (k) such as lim; —« Fi,1
(k) =0. Furtheremore F1,:(0) =0, 0.2= F1,1(1) > F1,1(k) >0(k=1) and Fi,(0) =—o0, 1/3=
Fi, (1) >Fo1 (k) >0(k>=1) and 2/3=F3,(0) > Fs,(k) >0(k>=1). Notice that 2=F3,(0) > F>,
(k) >0(k=1) especially.

Put 2=4/(e+2) and solve the equations (E:) of e then one has e= F;.(k) such as
limp—w Fi2(k) =—2(i=1, 2, 3,4). Furthermore F12(0) =00, —1.6=>F,(k) >—2(k>1) and
—2/3=F35(0) > F32(k) >—2(k=1) and Fi:(0)=—00, —3/4=Fy,(1) > Fi.(k) > —2(k=1).
Notice that F2(0) =2 and —26/15=Fs2(1) > Fs2(k) > —2(k>1) especially.

Put A=(3e—2)/(e+2) and solve the equations (E:) of e then one has e= F;3(k) such
as limy e Fiz(k)=—2(i=1, 2, 3,4). Furthermore F13(0) =2/3, —22/7=F13(1) <F3(k) <
—2(k=1) and F33(0) =00, —22/9=F35(1) <F33(k) <—2(k=1) and Fus(0)=2/3, —14/3=
Fi3(1) <Fi3(k) <—2(k>=1). Notice that F53(0) =2 and —8/3=Fy3(1) < Fe3(k) < —2(k>
1) especially.

Put A=3e¢/(e+4) and solve the equations (E;) of e then one has e=F;4(k) such as
lime—e Fia(k) =—4(i=1,2,3,4). Furthermore F;4(0) =0, —40/7=F1.(1) <F14(k) < —4(k
>1) and F34(0) =00, —14/3=F3,(1) < F34(k) < —4(k=1) and Fi4(0) =0, —8=Fy4(1) <Fi4
(k) < —4(k=1). Notice that F5.(0) =2, —5= F54(1) <F5.(k) < —4(k>1) especially.

To determine the parameter ¢ which at least one of A +iZ+ 7, —A+ig+ 9, A—ig+ 7,
A+ /i— U gives an odd integer at each eigenvalue Aii=his, Ao, Azs, As1=Ass, one must
determine nonnegative integers ki, ks, ks, ks such as Fiqy1 (k1) =Fie2 (k) =Fi),s(ks) = Fia,a
(k).

Conversely, if one has integers ki ks, ks, ks such as Fia (k) =Fio2 (k) =Fie)s (k) =
Funa(k)=e, then A+ji+v, —A+ag+0, A—ji+ 7, A+ji— ¥ gives an odd integer at each
above eigenvalue for this e.

By above discussion one can determine the parameter e=2 with above property
uniquely. Indeed for e=2 we have

— T4 at =t 31 (A, ha=E) (22)
—Atit+o= -%+%+%:1 (/12,1:$>, (23)
R e M (T e (24)
— T+ at ==ttt 31 (he, k=) (25)

and for another e, there exists an eigenvalue that none of A+ i+, —A+i+ 7, A—j+ 7,
A+ /i— 7 gives an odd integer at the eigenvalue.
Thus this theorem is proved and ANVE, ;(i=1, 2, 3; j=1, 2) are solvable if and only
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if e=2. Consequently ANE;(i=1, 2, 3) are all solvable if and only if e=2. []

Morales-Luiz and Ramis [6] showed following (see [6, 7, 11]).

[Theorem (Morales-Luiz and Ramis)] If a Hamilton system is integrable then the
normal variational equations around the each straight-line solutions must be solvable.
And, the normal variational equation is solvable, if and only if Gauss Hypergeometric
equations corresponding to normal variational equations around the straight-line solutions
are solvable.

(Proof) Omitted(See [6, 7, 11]). []

By use of above [Theorem (Morales-Luiz and Ramis)] we have following theorem.

[Theorem 2] If the Hamilton system (3) is integrable for e, then e must be 2.

(Proof) If (3) is integrable then all normal variational equations NVE,; (i=1, 2, 3) are
solvable, by [Theorem(Morales-Luiz and Ramis)]. Therefore ANVE;(i=1, 2, 3) are
solvable and ANVE;,;(i=1,2,3; j=1, 2) are solvable. Thus one has e=2 by [Theorem 1].
Thus theorem is proved. []

On the other hand, Lakshimanan and Shadevan considered the Hamilton system (see

[5]).
ngé{pﬂpﬂpé} +Aqi+Bgi+ Cai+ aqi+ Bas + yai + 04t 43 + et 43 + wai gt (26)

They gave the following two integrals ,,/> besides Hs for A=B=C, a=8=vy, 2a=58=¢€=
w:

L= qip2—q:21,
L= (qip2— q201)*+ (qeps— qsp2) *+ (qspr— q1p3) °.

Thus the Hamilton system Hs is integrable in this case. For e=2, Hamilton system (3)
satisfys these conditions, by Lakshimanan and Sahadevan, and it is integrable. Thus we
have following theorem.

[Theorem 3] Hamilton system (3) with three dimensional perturved Yang-Mills
potential is integrable if and only if e=2.

(Proof) By above discussion the proof is stated. Therefore the proof is omitted. []

5. A perturvation when e=o0

We considered the integrability of the perturved Hamilton system (3) for | e|<co in
the previous section. In the discussion of [1], we knew that e=o gave an integral
Kowalevskii’s exponent. This parameter e=00 may give the integrability of the Hamilton
system (3). But one dose not have the definition about the perturvation for e=oo.
Therefore we define the perturvation when e=oo in the first place.

By a transformation p.=tP:;,¢.=1Q.(i=1, 2, 3) we have a system of equations
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Qi=P;(i=1, 2, 3)

Pl=—er?Qi— 204 Qi Q3+ Q3Q))
Pi=—er?Q—27{ Q1 Q.+ Q. Q3)
Pi=—er?Q— 27 Q3 Qs+ Q: Q7).

Put r=1//e and e—, then we have a system of equations

Qi=P,Pi=—Q}(i=1, 2, 3).

This is a system of equations derived from

H* (QQuQu P PoPy) = (P4 PE+ P + V* (01,02, Q5), (27)
V* (010 Q) = (Qf+ Q4+QY). 28)
P Qf

There are two integrals [#= 9 + 4i (7=1, 2) besides H*(Q1,Q2,Qs,P1, P, P).

Therefore the Hamilton system H*(Q:,Q@s,Qs,P1, P, Ps) is integrable. Let us define the

integrability of perturved H (qi,qz,q3,01,02,03) at e=o0 by the integrability of H* (Q1,Q:,Qs,
PP, P;). In this sence we have following theorem.

[Theorem 4] The Hamilton system (3)

H (q1,42,q5,01,02,03) = T (p1,02,05) + V (q1,¢5,q5),
T (prot9) =5 (B4 41,

V (q1,42,q3) :Te(qi”rqz”- @) + (@B + BB+ adad)

is integrable when e=o0,

(1]

(2]

[3]

[4]

[5]

[6]

[7]

(Proof) This theorem is proved by above discussion. []
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