湖面の青色色彩に関する五色沼と北海道美瑛町青い池の 化学的類似性と相違性について

高貝慶隆・阿部遼太(福島大学・共生システム理工学類)

要旨

磐梯山の噴火によって形成された五色沼湖沼群は青,赤,緑など湖面が独特の色彩に見えることで有 名であるが,鮮やかな青に見える要因について様々な指摘がなされてきた.これらの湖沼は,日中が最 も鮮やかに見えること,また水中に銅イオンや青色色素が溶解していないことから,青く見える要因は 湖沼中のコロイド粒子による光の散乱と考えられてきた.千葉らは,この微粒子をアロフェンと指摘し ているが,五色沼湖沼群で微粒子がどのような粒子径及び形態で存在し散乱に寄与しているかに関して は示されていなかった.本研究では,五色沼湖沼群の比較対象として,類似点の多い北海道美瑛町の青 い池を採水し,ナノメートルオーダーの微粒子に関する粒子径と粒子数,形状,および,その化学的組 成等を測定して比較検討した.

I. はじめに

五色沼湖沼群は, 磐梯山の北側に位置する数十か らなる湖沼群の総称である。1888年(明治21年)7 月15日, 成層火山の磐梯山が大噴火(水蒸気爆発) した際, 噴火に生じた山体崩壊と岩屑なだれが山体 斜面を流下して, 磐梯山北側山麓に広く堆積した. このとき, この火山泥流上の窪地が生じて, そこ に水がたまり, 現在の裏磐梯三湖(桧原湖, 小野 川湖, 秋元湖)をはじめとする大小300余りの湖 沼群を形成した. 特に, その湖沼の中でも青, 赤, 緑などに色づいて見える数十の小湖沼群を特別 に五色沼湖沼群と呼ぶ. 爆発から十数年間は不毛 地帯であったが, 噴火から125年が経過した現在 (2013年)では景勝地ならびに地元の観光資源 となっている.

五色沼湖沼群の湖面は様々な色調を観察する ことが出来るため広く景勝地として認知されて いるが,五色沼湖沼群が鮮やかな青に見える要因 について様々な指摘がなされてきた.吉村らは五 色沼の青白色の原因として最も可能性が高いの は微粒子の存在であることを早くから指摘した.

一般的に水や湖沼の水面が青く見えることの 要因には,

- (1) 水中の溶質の光吸収によって生じる色調
- (2) 浮遊物及び湖底堆積物によって生じる色調
- (3) 光の反射(湖面反射)
- (4) 水の光吸収
- (5) 微粒子による光散乱

がある.これらの要因を総合的に判断して,千葉 らは湖沼中の微粒子による光散乱が五色沼の色 調の要因と考えてきたと推察できる.現在,その 微粒子による光散乱を否定する因子は無く,ほぼ 光散乱によるものと判断できる.

その一方で、日本全国には、五色沼湖沼群のよ うに水面が青く見える湖沼がいくつか存在する. その中でも北海道美瑛町にある青い池は、活火山 の十勝岳の砂防事業によって形成された人工造 成沼である.主に、増水時の周辺地域へ浸水を防 ぐことを目的として整備された.この緩衝地帯に 河川水が溜まり、人工池を形成している.この池 の湖面が鮮やかな青色を呈しており、国土交通省 北海道開発局所管の土地、すなわち、立ち入りを 禁じていた区画にも関わらず、見学者が後を絶え ず、現在では、国土交通省北海道開発局および美 瑛町が協力して町おこしの一環として遊歩道を 整備して景勝地・観光地としてにぎわっている. したがって、この青い池は、五色沼湖沼群のよう に特定の名称が無く、美瑛町の"青い池"と呼ば れている.

その一方で、この青い池は、火山性の十勝岳の ふもとに位置して,近郊に白金温泉を有する.十 勝岳方向から流れてくる硫黄沢川,および,尻無 沢川の酸性の水質を示す河川が,中性の水量豊か な美瑛川と合流して、合流点から川の色が乳白色 を含む青色に変化する. アルミニウム成分を多く 含む河川と合流することで乳白色の水酸化アル ミニウムの微粒子が発生していると言われてい る(後述するが、本研究から水酸化アルミニウム ではないと考えらえる).この乳白色の微粒子が、 青い池に流れ込み粒子が滞留することで、その流 れの緩やかな人工池の部分のみ特別に青く見え ているものと推察できる.この誰の目からも明ら かな河川と河川の合流によって生じているアル ミニウム系微粒子の化学的なプロファイルを明 らかにして,五色沼との類似点と相違点を把握す れば,五色沼における青色を呈する微粒子の発生 源(由来)の解明に役立つことが考えられる.

今回,北海道美瑛町の青い池の採水を行い,水 中に浮遊する光の波長に対応するナノメートル 〜数百ナノメートルのコロイド微粒子に着目し て,その動的光散乱測定 (DLS),走査型電子顕 微鏡 (SEM) 観察ならびにそれに付帯するエネル ギー分散型蛍光X線分析 (EDS),そして,青い池 の底質に沈着した微粒子を回収してX線回折分析

(XRD) 測定を行った.そして,五色沼湖沼群の 代表的な沼のデータと比較した.

II. 採水地

試料採取は,北海道美瑛町にて2013年8月28 日および同年10月24日に青い池(図1),硫黄 沢川,尻無沢川,および美瑛川(いずれも図2を 参照)で試料水を採取した.

図1 北海道美瑛町青い池の上空からの写真, および,採水地点①~③

図2 北海道美瑛町青い池より上流に位置する硫黄 沢川,美瑛川,尻無沢川の合流地点を上空から撮 影した写真とそれぞれの河川の採水地点

III. 分析試料と分析方法

器具·装置

メンブレンフィルターは直径 25 mm の ADVATEC 製のセルロース混合タイプ(孔径:5.0 µm, 0.8 µm)及び PTFE タイプ(孔径:0.1 µm)を使用 した.動的光散乱粒子径測定装置(DLS)は堀場製 作所製の SZ-100Z を使用した.光散乱式粒子径数 器は RION 製の XL-10A 改造型を使用した.ペリ スタルティックポンプは GILSON 製の MINIPULS3 を使用した.超純水製造装置は日本 ミリポア製の Direct-Q UV を使用した.高分解能 電界放出型走査電子顕微鏡システム(SEM)は日 立ハイテクノロジーズ製の SU8000 を使用した. エネルギー分散型 X 線分光装置(EDS) は SEM に付随したものを使用した. 蛍光 X 線分析装置

 (XRF) はリガク製の RIX1000 を使用した. 粉
末 X 線回折装置(XRD) はリガク製のビルドア ップ型多機能 X 線回折装置 RINT-Ultima III を使用 した. 吸引ポンプ(真空ポンプ)は柴田科学製の
V-500 型を使用した.水試料中の溶存金属イオン の定量分析には,パーキンエルマー社製 ICP-OES
Optima8300 を使用した.

分析操作

(1) 吸引ろ過とフィルターの乾燥

採水した水試料を孔径が 5.0 µm のメンブラン フィルターを用いて吸引ポンプで吸引ろ過し,ろ 過鐘内の 100 mL ポリボトルに引き込んだ.その 時まず約 5 mL の吸引ろ過した湖水で 2 回共洗い し,次に約 90 mL ろ過し,100 mL ポリボトル内 に保存した.次に保存した 5.0 µm フィルターで ろ過した湖水のろ液の 5 mL をさらに同様にして 0.8 µm のメンブランフィルターで 2 回吸引ろ過 して共洗いに用い,40 mL を吸引ろ過で 100 mL のポリボトル内に引き込み保管した.さらにこの 保管した湖水を同様にして 0.1 µm のメンブラン フィルターを用いて 5 mL を 2 回の共洗いに用い, 15 mL を 100 mL のポリボトルに引き込み保管し た. ろ過に用いた孔径 5.0 µm, 0.8 µm, 0.1 µm の メンブレンフィルターは細かい穴をあけたラッ プで蓋をした厚紙の箱の中に置き,自然乾燥させ た. また 0.1 µm のフィルターろ過したろ液の 10 mL を時計皿上に滴下し,同様にして乾燥させた.

(2) 粒径分布の測定

孔径 0.8 µm のメンブランフィルターでろ過し たろ液をよく攪拌し,光路径1 cm の石英キュベ ットセルを3回共洗いし,2 mL のろ液をセルに 投入して DLS を用いて粒度分布を測定した(測 定条件:試料屈折率1.48,分散媒屈折率1.33,多 分散形態,25℃).ろ液の測定対象粒子は濃度が 非常に薄く測定誤差が大きい.またろ液中の粒子 は均一濃度ではないと仮定して,1検体に対して ろ液を5等分し,それぞれ3回ずつ繰り返し測定 することで再現性を保つことに努めた.

(3) 粒子の形状観察と粒子を構成する元素分析 乾燥させた孔径 5.0 µm と 0.8 µm のメンブラン フィルター上に捕集された粒子を SEM で観察した.次に SEM に付帯する EDS を用いて粒子を構成する元素を分析した.

(4) 底質の元素分析と結晶構造解析

湖泥の約 200 mg をアルミホイルで作成した箱 に入れ 80°C の乾燥機内で乾燥させた.この乾燥 した土をビニール袋にいれ上から乳鉢でたたき 粉砕した後,ふるいにかけて粉末を得た.この底 質の粉末をXRFおよびXRDを用いて測定して元 素分析と結晶構造解析を行った.

IV. 結果と考察

青い池とナノレベルのコロイド粒子の粒度分布と五 色沼との比較

DLS により得られた青い池の粒度分布を図3 に示す. 青い池におけるナノレベルのコロイド粒 子粒度は, サブナノから数百ナノメートルまでの 幅広い領域で分布を観察することができた.主た るピークは10~800 nm 付近までブロードに観 察された.この粒子径の分布は,五色沼の青沼の 挙動と類似していた.美瑛町の青い池と五色沼の 青沼はいずれも視覚的に青く見えること著名な 池である.その一方で,青く見えない五色沼の柳 沼は,1µm 付近に大きな粒子の分布を観察した. DLS は、レーザー光の散乱を利用する分析装置 であるため、柳沼に関してはサブナノ〜数百ナノ メートルまでのコロイド粒子が存在しないわけ ではなく、光散乱が大きく反映されるより大きな 粒子を特徴的に観察しているものと推察できる. このことは、逆に、美瑛の青い池および五色沼の 青沼は、光散乱を大きく阻害するµm オーダーの 微粒子の存在が小さいことを意味する.

図3 孔径0.8 µmフィルターでろ過したろ液のナ ノレベルの粒度分布

粒子の形状観察と粒子を構成する元素分析

美瑛町青い池の水中に浮遊するコロイド粒子 をフィルターした際,その微粒子のほとんどはメ ンブランフィルターの空孔内を通過するが,かろ うじてフィルター上に捕集される微粒子も存在 する.そのコロイド粒子を SEM によって観察し た写真を図4に示す.

図4 孔径 5.0 µm のメンブランフィルター上に捕 集された美瑛・青い池のコロイド粒子の走査型 電子顕微鏡写真(白金蒸着処理)

SEM 写真より,美瑛町青い池のコロイド粒子の形状は定型を示さず,様々な形状と大きな粒子が存在していた.その中でも最も主要な粒子の形状は,先が尖った長さ 500~600 nm,幅 10~50 nmの鏃状のコロイド粒子であった.

その一方で,五色沼の微粒子は,図5のように 一見,球状を有する微粒子を単位粒子として,そ れらが連結した粒子群として観察された.この単 位粒子は一定のサイズを有しているものの全体 的には不定形である.しかしながら,今回のSEM 撮影では白金蒸着処理を行っているため,単位粒 子が球形に見えているものの,詳細な全体像は透 過型電子顕微鏡によってさらに詳細に観察する 必要がある.しかしながら,その特徴は明らかに 美瑛町青い池の粒子と五色沼の微粒子では特徴 を異とするものであることが分かった.

また, 孔径 5.0 μm のメンブランフィルター上に捕 集された北海道の青い池と五色沼・青沼のコロイド 粒子の EDS プロファイル(蛍光 X 線スペクトル)を図 6 に示す.

水中に分散するコロイド微粒子は,美瑛・青い池と 五色沼・青沼のいずれもアルミニウムとケイ素のピー クを示し,五色沼・青沼はそのほか微弱な鉄のピー クを示した.このX線スペクトルから、美瑛・青い池と 五色沼・青沼のいずれも微粒子の組成はケイ酸アル ミニウムである可能性が大きい。

図5 孔径5.0 µm のメンブランフィルター上に捕 集された五色沼・青沼のコロイド粒子の走査型 電子顕微鏡写真(白金蒸着処理):上図 500 nm スケール,下図 2 µm スケール

底質の元素組成とX線回折

美瑛・青い池と五色沼のいくつかの底質の XRF プロ ファイルを図7に示す. XRF の結果から, 底質は酸 化ケイ素と酸化アルミニウムを示した.したがって, 先の水中を浮遊するコロイド粒子の元素組成は矛盾 しない.また,その酸化ケイ素と酸化アルミニウムの 比率は、五色沼・柳沼を除き、いずれも 0.5~2 の範 囲に入ったが、同一の組成ではなかった. 青い色を 呈している池のなかでは、美瑛・青い池と五色沼・毘 沙門池は同様の傾向を示した.

また底質の XRD 測定からは図8のような回折プロフ ァイルを得た.美瑛町の青い池は鋭いピークが見ら

図6 孔径 5.0 µm のメンブランフィルター上に捕 集された美瑛・青い池(上)と五色沼・青沼(下) の水中のコロイド粒子の走査型電子顕微鏡に おける蛍光 X 線スペクトル(白金蒸着処理)

れた. 青色を呈する五色沼湖沼の湖沼は同じ面間 隔を示す非結晶性を示すハローが観察された.

この XRD と SEM の結果を鑑みると、美瑛青 い池は不定形の粒子形状を示すものの, 粒子自体 は結晶性を示し、多結晶性であることが分かった.

図 8 美瑛・青い池(上)と五色沼・るり沼(下)の 底質の XRD プロファイル

その一方で,五色沼のコロイド粒子は形状の揃っ た球状(もしくは楕円などの球状に近い)単位粒 子が観察されることから,結晶性の高い粒子が存 在することがわかるが,その単位粒子が他の粒子 とランダムに連結して全体的に不定形な形状を 示すため,全体像としての粒子配列に不規則性を 生じて非結晶性のプロファイルを示すものと考 えられる.

水中の元素分布と定量分析

青い池,美瑛川(合流前), 尻無沢川(合流前), 硫黄沢川(合流前), および, 3 河川合流直後の水 試料を ICP-OES により多元素同時分析した結果を 表1に示す. 尻無沢川と硫黄沢川の火山由来(硫化 水素に起因すると思われる)の酸性の水質(pH 4~5) によって溶かしだされた火山灰由来のケイ酸アルミ ニウムが, 水量のある美瑛川(pH 5.7~6.8)と合流す ることで急激な中和反応が生じるものと推察される. その際、ケイ酸アルミニウムの形状で不定形の多結晶微粒子を形成し、沈降するものと考えらえる. その一方で、尻無沢川と硫黄沢川に含まれるアルミニウムとケイ素が、単独のイオンとして溶解しているのか、それとも、SiO₂-Al₂O₃のクラスターイオンとして溶存しているかまでは特定することができなかった. しかし、複数の河川の混合によって、短時間で乳白色を示すことからも、SiO₂-Al₂O₃のクラスターイオンと して存在している可能性が高いと推測できる.

V. まとめ

本研究は,光散乱によって湖面の色彩変化を生 じさせるナノレベルの大きさの微粒子に着目し、 その粒径分布, 粒子形状, さらには, その元素組 成や結晶構造について,北海道美瑛町青い池と五 色沼湖沼群との比較を行った.北海道美瑛町青い 池は、水質の異なる3つの河川が合流することに よって色彩変化を生じる湖沼であり、その河川の 一つが火山性の河川である. さらに、青い池の粒 子はアルミウム系粒子であることから,五色沼と 類似点も多く,五色沼の微粒子の由来を議論する ための比較対象として調査すべき価値がある.本 研究の結果、青い池のナノ粒子径分布は10~800 nm 付近まで幅広い分布幅を有し、その分布は、 五色沼の青沼の挙動と類似していた.美瑛町青い 池のコロイド粒子の形状は,不定形で大きさもま ばらであるが, 粒子自体は結晶性を示すため, 多 結晶状態であると判断できる.様々な形状が存在 していたが主要な粒子の形状は、長さ 500~600 nm,幅10~50 nmの鏃状のコロイド粒子であっ た.この粒子は、ケイ酸アルミニウムでその組成 比は底質とコロイド粒子で数値にバラつきがあ るものの SiO₂ / Al₂O₃ < 1~2 の範囲であった.こ の値は, 五色沼・毘沙門池の底質と同じ比率であ った.これまで北海道美瑛町で考えている水酸化 アルミニウムを主成分とする微粒子ではない可 能性が高いことが分かった.このケイ酸アルミニ ウムで構成されたナノレベルの多結晶微粒子と

表 1 美瑛町青い池に関する河川の多元素定量結果一覧(測定溶液濃度)

			1	1		++ \ # 11	++ \ . " II	<u>++>,=*"</u>	++ \. -1 II	44 \ 1 11	++ -1 u	++ - 1 u
						<u> </u>	サンフル	サンフル	9250	9 <i>2</i> 7 <i>1</i>	リンフル	9.2.71
No	表示名	元素	波長 [nm]	DL	濃度単位	青い池1	青い池2	青い池3	美瑛川合流 前A	尻無沢川合 流前B	合流後C	硫黄沢川
1	Ag 328.068	Ag	328.068	0.001	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
2	A 396.153	A	396.153	0.002	mg/L	0.440	0.137	0.256	0.038	6.463	0.473	5.906
3	As 188.979	As	188.979	0.015	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
4	Ba 233.527	Ba	233.527	0.000	mg/L	0.006	0.005	0.006	0.003	0.006	0.005	0.008
5	Be 313.107	Be	313.107	0.000	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
6	Bi 223.061	Bi	223.061	0.008	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
	Ca 317.933	Ca	317.933	0.004	mg/L	22.850	23.050	28.780	7.163	125.600	20.610	82.780
8	Cd 228.802	Cd	228.802	0.001	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
9	Co 228.010		228.616	0.001	mg/L mg/L	0.001		0.001			0.001	0.003
10	CI 207.710		207.710	0.000	mg/L							
12	Ce 455 531		155 531	0.001	mg/L							
13	Fe 238 204	Fe	238,204	0.000	mg/L	0.084	0.029	0.028	0.003	0.019	0.110	0.053
14	Ga 417.206	Ga	417.206	0.004	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
15	In 230.606	In	230.606	0.010	ma/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
16	K 766.490	к	766.490	0.001	mg/L	2.271	2.223	2.758	0.760	9.603	1.905	5.543
17	Li 670.784	Li	670.784	0.000	mg/L	0.008	0.008	0.011	0.001	0.036	0.006	0.020
18	Mg 285.213	Mg	285.213	0.001	mg/L	6.569	6.466	8.270	0.850	54.200	5.871	16.000
19	Mn 257.610	Mn	257.610	0.000	mg/L	0.218	0.212	0.315	0.000	2.997	0.206	0.652
20	Na 589.592	Na	589.592	0.001	mg/L	10.510	10.620	13.020	2.467	0.000	8.588	21.830
21	Ni 231.604	Ni	231.604	0.002	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
22	Pb 220.353	Pb	220.353	0.005	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
23	Rb 780.023	Rb	780.023	0.005	mg/L	0.007	0.007	0.008	0.001	0.053	0.006	0.020
24	Sr 407.771	Sr	407.771	0.000	mg/L	0.063	0.062	0.076	0.026	0.270	0.057	0.153
25	Se 196.026	Se	196.026	0.014	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
26	II 190.801		190.794	0.006	mg/L		<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td></td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>		<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
27	U 363.936		200,920	0.010	mg/L							
20	7n 206 200	7n	290.880	0.001	mg/L					0.076		0.021
30	Διι 267 595		267 595	0.003	mg/L							
31	Hf 277, 336	Hf	277.336	0.001	mg/L		<1.0D		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
32	Ir 205.222	Ir	205.222	0.168	ma/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
33	Pd 340,458	Pd	340.458	0.003	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
34	Pt 265.945	Pt	265.945	0.005	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
35	Rh 343.489	Rh	343.489	0.003	mg/L	<lod< td=""><td><lod< td=""><td>· <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>· <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	· <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
36	Ru 240.272	Ru	240.272	0.002	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
37	Sb 206.836	Sb	206.836	0.012	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
38	Sn 189.927	Śn	189.927	0.005	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
39	Te 214.281	Те	214.281	0.009	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
40	B 249.677	В	249.677	0.001	mg/L	0.083	0.082	0.105	0.008	0.601	0.072	0.230
41	Ge 209.426	Ge	209.426	0.010	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
42	MO 202.031	IVIO Nilo	202.031	0.002	mg/L							
43	ND 309,410		212 617	0.002	mg/∟							
44	Re 197 248	Re	197 248	0.010	mg/L							
46	S 181,975	s	181.975	0.050	mg/L	31.840	31,480	40.000	7,189	216,100	28,550	116,100
47	Si 251.611	Si	251.611	0.002	ma/L	17.080	16.430	19.580	12,170	48.510	16,480	32,980
48	Ta 226.230	Та	226.230	0.004	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
49	Ti 337.279	Ti	337.279	0.001	mg/L	0.003	0.001	0.001	<lod< td=""><td>0.001</td><td>0.004</td><td>0.001</td></lod<>	0.001	0.004	0.001
50	W 207.912	W	207.912	0.004	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
51	Zr 343.823	Zr	343.823	0.000	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
52	Ce 413.380	Ce	413.380	0.004	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.011</td><td><lod< td=""><td>0.008</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.011</td><td><lod< td=""><td>0.008</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.011</td><td><lod< td=""><td>0.008</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.011</td><td><lod< td=""><td>0.008</td></lod<></td></lod<>	0.011	<lod< td=""><td>0.008</td></lod<>	0.008
53	Dy353.170	Dy	353.170	0.001	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
54	Er 339.200	Er	339.200	0.001	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
55	Eu 381.967	Eu	381.967	0.000	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
56	Ga 342.247	Gđ	342.247	0.001	mg/L	<lod< td=""><td><lod< td=""><td></td><td><lod< td=""><td>0.003</td><td><lod< td=""><td>0.003</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td></td><td><lod< td=""><td>0.003</td><td><lod< td=""><td>0.003</td></lod<></td></lod<></td></lod<>		<lod< td=""><td>0.003</td><td><lod< td=""><td>0.003</td></lod<></td></lod<>	0.003	<lod< td=""><td>0.003</td></lod<>	0.003
5/	H0 345.600	HO	345.600	0.000	mg/L	<lod< td=""><td><lod< td=""><td><lod 0.001</lod </td><td></td><td>0.001</td><td></td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod 0.001</lod </td><td></td><td>0.001</td><td></td><td><lod< td=""></lod<></td></lod<>	<lod 0.001</lod 		0.001		<lod< td=""></lod<>
50	La 400.07Z		261 536	0.001	mg/∟			21.00		21.004		21.002
60	Nd 406 100	Nd	406 109	0.000	ma/L					0.007		0.006
61	Pr 390 844	Pr	390 844	0.002	ma/l				<1.00	0.007	<lod< td=""><td>0.001</td></lod<>	0.001
62	Sc 424.683	Sc	424.683	0.000	ma/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.004</td><td><lod< td=""><td>0.001</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.004</td><td><lod< td=""><td>0.001</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.004</td><td><lod< td=""><td>0.001</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.004</td><td><lod< td=""><td>0.001</td></lod<></td></lod<>	0.004	<lod< td=""><td>0.001</td></lod<>	0.001
63	Sm 359.260	Sm	359.260	0.002	ma/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.003</td><td><lod< td=""><td>0.002</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.003</td><td><lod< td=""><td>0.002</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.003</td><td><lod< td=""><td>0.002</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.003</td><td><lod< td=""><td>0.002</td></lod<></td></lod<>	0.003	<lod< td=""><td>0.002</td></lod<>	0.002
64	Tb 350.917	Tb	350.917	0.002	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
65	Th 283.730	Th	283.730	0.002	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
66	Tm 313.126	Tm	313.126	0.001	mg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
67	Y371.029	Y	371.029	0.000	mg/L	0.001	<lod< td=""><td>0.002</td><td><lod< td=""><td>0.016</td><td>0.001</td><td>0.011</td></lod<></td></lod<>	0.002	<lod< td=""><td>0.016</td><td>0.001</td><td>0.011</td></lod<>	0.016	0.001	0.011
68	Yb 328.937	Yb	328.937	0.000	mg/L	<lod< td=""><td><lod< td=""><td>0.001</td><td><lod< td=""><td>0.002</td><td><lod< td=""><td>0.002</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.001</td><td><lod< td=""><td>0.002</td><td><lod< td=""><td>0.002</td></lod<></td></lod<></td></lod<>	0.001	<lod< td=""><td>0.002</td><td><lod< td=""><td>0.002</td></lod<></td></lod<>	0.002	<lod< td=""><td>0.002</td></lod<>	0.002
69	Hg 253.652	l Hg	253.652	1	ma/L			1				

測定条件;使用装置 PerkinElmer ICP-OES Optima8300,導入系;ガラス製同軸ネブライザー/ガラス製サイクロンチャンバー/石英トーチ/アルミナインジェクター2 mm i.d.,サンプル流速;1 mL/min,プラズマ条件;プラズマガス 8 L/min / 補助ガス 0.2 L/min / キャリヤーガス 0.55 L/min,積分時間:1~5秒自動積分×3. LOD; 検出下限値, <LOD;検出下限値以下

鏃状の形状が光散乱に強く影響していると考え られる.今回の結果から,北海道美瑛町青い池の ように,水質の異なる3つの河川が合流して短時 間で微粒子を生じる場合は,不定形の多結晶が生 じることが分かった.五色沼の場合,大小の多く の湖沼群が存在するが,そのナノサイズのコロイ ド粒子は,ほとんどが同じ形状,同じ大きさ,さ らには結晶構造まで類似性があることがわかっ た.これらの状況を鑑みると,五色沼湖沼群にお ける光散乱に起因するナノサイズの微粒子の起 源(由来)は,2液混合系,すなわち,水質の異 なる液体が混ざり合って微粒子を生成するメカ ニズムではない可能性が大きいと考えられる. 謝辞

北海道開発局旭川開発建設部の西村義様, 福島 大学共生システム理工学類 高瀬つぎ子特任准教 授にはご多忙中にもかかわらず, ご協力いただき お礼申し上げます.

引用文献

千葉 茂(1988)猪苗代湖·裏磐梯湖沼群の水質, 地学雑誌, 97, 376-381.

吉村信吉(1936)地理学評論, 12, 42.